Ciclo Cardíaco

El ciclo cardíaco es la secuencia de eventos eléctricos, mecánicos, sonoros y de presión, relacionados con el flujo de su contracción y relajación de las cuatro cavidades cardiacas (auriculas y ventrículos), el cierre y apertura de las válvulas y la producción de ruidos a ellas asociados. Este proceso transcurre en menos de un segundo.La recíproca de la duración de un ciclo es la frecuencia cardíaca (como se suele expresar en latidos por minuto, hay que multiplicar por 60 si la duración se mide en segundos)

Sistema de conducción eléctrica del corazón.
  • Nódulo sinoauricular
  • Nódulo auriculoventricular
  • Haz de His
  • Rama izquierda
  • Fascículo posterior izquierdo 6. Fascículo anterior izquierdo
  • Ventrículo izquierdo
  • Tabique interventricular
  • Ventrículo derecho
  • Rama derecha
Todos los segmentos del miocardio son excitados casi simultáneamente (tinte violeta)
1. Nódulo sinoauricular.
2. Nódulo auriculoventricular.
La acción de bombeo del corazón proviene de un sistema intrínseco de conducción eléctrica. El impulso eléctrico se genera en el nódulo sinusal, que es una pequeña masa de tejido especializado localizada en el atrio derecho del corazón. A continuación, el impulso eléctrico viajará hasta el nódulo atrioventricular, donde se retrasan los impulsos durante un breve instante, y después continúa por la vía de conducción a través del Haz de Hiss (el cual se divide en una rama derecha y otra izquierda) hacia los ventrículos. La vía de conducción finaliza en una serie de fibras denominadas fibras de Purkinje.
La capacidad que posee el corazón para generar un impulso eléctrico reside en las células que lo forman. Estos miocardiocitos son autoexcitables, lo que significa que no requieren la presencia de un estímulo externo para generar una respuesta contráctil; y rítmicas lo cual les permite mantener una frecuencia de contracción suficiente para mantener la actividad de bombeo sin detenerse.
El nódulo sinusal (también llamado nódulo sinoatrial o nódulo SA), está formado por un grupo de fibras auriculares que presentan la ritmicidad más alta. Por ello, su actividad es la que marca la frecuencia básica del corazón y se las denomina células marcapaso.Este nódulo genera regularmente un impulso eléctrico (de 60 a 100 veces por minuto en condiciones normales) El potencial de acción se propagará por las células cardíacas gracias a uniones tipo gap existentes entre ellas. De esta manera, la despolarización iniciada en el nodo sinusal se expande por todas las fibras auriculares de arriba abajo, a través de cuatro haces que salen del nódulo:
Los tres primeros recorren el atrio derecho, y son la rama anterior, rama media y rama posterior
La cuarta rama es la rama para el atrio izquierdo, y se dirige a este lugar.
De esta forma los atrios derecho e izquierdo son estimulados en primer lugar y se contraen durante un breve período de tiempo antes de que lo hagan el resto de cavidades.
La despolarización alcanza el nódulo auriculoventricular, situado en la cruz cardíaca (localizada en el cruce de los septos interatrial e interventricular con el septo atrioventrivular) En este punto existen los anillos fibrosos o esqueleto cardíaco.
Se produce un enlentecimiento de la propagación (retraso de 0,1 seg) debido a la geometría de las fibras. Este nodo se caracteriza por ser un haz estrecho con pocas uniones tipo gap, por lo que la velocidad de conducción del impulso es más baja y se da lugar a este retraso.
A continuación, el potencial se desplaza rápidamente a través del haz de His, el cual se dividirá en una rama derecha y una rama izquierda. Estas ramas recorren todo el septo interventricular. Su función es generar la contracción del septo.
Por último, las fibras de Purkinje o red subendocárdica recorren las paredes libres de los ventrículos derecho e izquierdo para generar la contracción ventricular.

Fases del ciclo cardíaco
Artículo principal: Fases del ciclo cardíaco.
En cada latido se distinguen cinco fases:
  • sístole auricular
  • contracción ventricular isovolumétrica
  • eyección
  • relajación ventricular isovolumétrica
  • llenado ventricular pasivo
Las tres primeras corresponden a la sístole (contracción miocárdica, durante la cual el corazón expulsa la sangre que hay en su interior) y las dos últimas a la diástole (relajación cardiaca, durante el cual el corazón se llena de sangre). La diástole es más larga que la sístole: aproximadamente dos tercios de la duración total del ciclo corresponden a la diástole y un tercio a la sístole.

Sístole auricular
El ciclo se inicia con un potencial de acción en el nódulo sinusal que en un principio se propagará por las aurículas provocando su contracción. Al contraerse éstas, se expulsa toda la sangre que contienen hacia los ventrículos. Ello es posible gracias a que en esta fase, las válvulas auriculoventriculares (Mitral y Tricúspide) están abiertas, mientras que las sigmoideas (Aórtica y Pulmonar) se encuentran cerradas. Al final de esta fase; toda la sangre contenida en el corazón se encontrará en los ventrículos, dando paso a la siguiente fase.

Contracción ventricular isovolumétrica
La onda de despolarización llega a los ventrículos, que en consecuencia comienzan a contraerse. Esto hace que la presión aumente en el interior de los mismos, de tal forma que la presión ventricular excederá a la auricular y el flujo tenderá a retroceder hacia estas últimas. Sin embargo, esto no ocurre, pues el aumento de la presión ventricular determina el cierre de las válvulas auriculoventriculares, que impedirán el flujo retrógrado de sangre. Por lo tanto, en esta fase todas las válvulas cardiacas se encontrarán cerradas.

Eyección
La presión ventricular también será mayor que la presión arterial en los grandes vasos que salen del corazón (tronco pulmonar y aorta) de modo que las válvulas sigmoideas se abrirán y el flujo pasará de los ventrículos a la luz de estos vasos. A medida que la sangre sale de los ventrículos hacia éstos, la presión ventricular irá disminuyendo al mismo tiempo que aumenta en los grandes vasos. Esto termina igualando ambas presiones, de modo que parte del flujo no pasara, por gradiente de presión, hacia la aorta y tronco pulmonar. El volumen de sangre que queda retenido en el corazón al acabar la eyección se denomina volumen residual, telesistólico o volumen sistólico final; mientras que el volumen de sangre eyectado será el volumen sistólico o volumen latido (aproximadamente 70mL).

Relajación ventricular isovolumétrica
Corresponde al comienzo de la diástole o, lo que es lo mismo, al periodo de relajación miocárdica. En esta fase, el ventrículo se relaja, de tal forma que este hecho, junto con la salida parcial de flujo de este mismo (ocurrido en la fase anterior), hacen que la presión en su interior descienda enormemente, pasando a ser inferior a la de los grandes vasos. Por este motivo, el flujo de sangre se vuelve retrógrado y pasa a ocupar los senos aortico y pulmonar de las valvas sigmoideas, empujándolas y provocando que éstas se cierren (al ocupar la sangre los senos aórticos, parte del flujo pasará a las arterias coronarias, con origen en estos mismos). Esta etapa se define por tanto como el intervalo que transcurre desde el cierre de las válvulas sigmoideas y la apertura de las auriculoventriculares.

Llenado ventricular pasivo
Durante los procesos comentados anteriormente, las aurículas se habrán estado llenando de sangre, de modo que la presión en éstas también será mayor que en los ventrículos, parcialmente vaciados y relajados. El propio gradiente de presión hará que la sangre circule desde las aurículas a los ventrículos, empujando las válvulas mitral y tricúspide, que se abrirán permitiendo el flujo en este sentido. Una nueva contracción auricular con origen en el nódulo sinusal finalizará esta fase e iniciará la sístole auricular del siguiente ciclo.

Factores:
Es importante recordar que existen diversos determinantes de la función cardíaca que pueden alterar las fases del ciclo: la precarga, la postcarga, el inotropismo, la distensibilidad y la frecuencia.
La precarga depende del volumen del ventrículo al final de la diástole (VFD)
La postcarga representa la presión aórtica en contra de la que el ventrículo debe contraerse
El inotropismo corresponde a la fuerza intrínseca que genera el ventrículo en cada contracción como bomba mecánica
La distensibilidad se refiere a la capacidad que el ventrículo tiene de expandirse y llenarse durante la diástole
La frecuencia cardíaca, es el número de ciclos cardíacos por unidad de tiempo.
El ciclo se repite unas veinte veces por minuto, pero puede incrementarse o ralentizarse según las necesidades del organismo a través del sistema nervioso.

Curva de presión auricular
Las aurículas experimentan una serie de cambios en su presión según las distintas fases del ciclo cardíaco:

Eventos cardíacos que ocurren durante un cíclo cardíaco.
Onda “a”: corresponde con la contracción de la aurícula (sístole auricular)
Onda “c”: Es causada por el abombamiento del plano valvular hacia la aurícula al contraerse el ventrículo (contracción ventricular isovolumétrica)
Seno “x”: Se trata de un descenso en la presión en la aurícula por el desplazamiento del plano valvular hacia la punta durante la expulsión ventricular (eyección)
Onda “v”: Llega sangre a la aurícula, lo que implica un aumento de presión (relajación ventricular isovolumétrica)
Seno “y”: Se produce la apertura de la válvula aurículo-ventricular, lo que supone un descenso de la presión auricular por el vaciamiento de sangre hacia el ventrículo (llenado ventricular pasivo)
Curva de presión ventricular

Durante la sístole auricular, la presión ventricular aumenta por la llegada de sangre debido a la contracción de la aurícula
Esta presión sigue en aumento durante la contracción ventricular isovolumétrica hasta el momento en el que supera la de las válvulas sigmoideas
Con la apertura de las válvulas sigmoideas tiene lugar la eyección de sangre a los grandes vasos. La presión sigue en aumento por la contracción del ventrículo y comienza a descender una vez que se ha vaciado, de manera que se cierran también las válvulas sigmoideas cuando la presión en el ventrículo es menor que en los grandes vasos
Con el comienzo de la diástole (relajación ventricular isovolumétrica) la presión sigue en descenso hasta que se hace menor que en la aurícula, momento en el que se abren las válvulas aurículo-ventriculares
Con la apertura de las válvulas, comienza el llenado ventricular pasivo y, por tanto, el aumento progresivo de la presión
Curvas de presión en la arteria aorta y en la arteria pulmonar Las válvulas sigmoideas se abren cuando la presión en los ventrículos es superior a la de los grandes vasos, es decir, éstas se abren durante la eyección y vacían la sangre, de manera que desde su apertura hasta el cierre, el ventrículo y la arteria correspondiente comparten presión, por lo que la gráfica de presión es idéntica para ambas. Una vez que se cierra la válvula, la presión desciende poco a poco, ya que la pared arterial es elástica.

Curvas de presión
Si se diseña una gráfica comparando la presión contra el volumen del ventrículo izquierdo, el resultado que obtendremos es una curva cíclica. Tanto en la sístole como la diástole, la presión del ventrículo izquierdo depende del volumen que contiene en su interior y de la distensibilidad. Es decir, un ventrículo tiene una presión aumentada si es poco distensible o si tiene un volumen de sangre aumentado en su interior. Los fenómenos cíclicos pueden ser estudiados desde cualquier punto del mismo. Los principales eventos eléctricos, mecánicos y sonoros, correlacionados en la curva de presión volumen se puede resumir en:

Diástole Ventricular
Al final de una contracción el ventrículo se relaja (en este punto ocurre la relajación isométrica en la que hay un cambio de presión sin cambio de volumen)
Cuando la presión del ventrículo es menor que en la aurícula izquierda, se abre la válvula mitral y el ventrículo empieza a llenarse en dos fases: llenado rápido y llenado lento. En algunas condiciones patológicas se produce un tercer ruido durante la fase de llenado rápido
Antes de terminar el llenado se produce la onda P en el ECG, posteriormente se contrae la aurícula y se produce la onda A en la curva de pulso venoso. En esa contracción puede escucharse el cuarto ruido en ciertas situaciones. Después se cierra la válvula mitral, lo que produce el primer ruido cardíaco. Justo antes de que se produzca este fenómeno sonoro, se despolariza el ventrículo y se genera el QRS del ECG

Sístole ventricular
El ventrículo empieza a contraerse y la presión aumenta hasta que excede la presión en la aorta (hasta este momento se llama contracción isométrica, porque se presenta un cambio de presión sin cambio de volumen)
En este punto la válvula aórtica se abre y se inicia la eyección rápida y la eyección lenta de sangre, que continúa en contra de la presión aórtica hasta que disminuye la presión del ventrículo y se hace menor que la presión aórtica. Al final de esta fase se produce la repolarización del ventrículo y la onda T del ECG
En este momento se cierra la válvula aórtica y se genera el segundo ruido cardíaco y finaliza la eyección.




Otras entradas relacionadas



0 comentarios:

Publicar un comentario